Thank you to all of our 2017 sponsors:

Aquatech™ Dewatering Company
Echelon Environmental
AECOM
Terrafix® Geoynthetics Inc.
RM Construction
Unilock
Hydro International
Filterexx® Sustainable Technologies
Solenoid
Mastering Storm Water
GEMS
Credit Valley Conservation
Geostorm
York Region
Lake Simcoe Region Conservation Authority

Media Partners
WATER CANADA
CANIECA
Toronto and Region Conservation
Hosts
for The Living City
TRCA AT A GLANCE

• One of 36 CAs in Ontario

• Provincially legislated under the CA Act of 1946

• Watershed boundaries (crosses multiple municipalities)

• Largest landowner in the GTA

The TRCA’s area of jurisdiction includes:
• 3,467 sq. km: 2,506 on land and 961 water-based.

This area is comprised of nine watersheds including:
• Etobicoke Creek
• Mimico Creek
• Humber River
• Don River
• Highland Creek
• Rouge River
• Petticoat Creek
• Duffins Creek
• Carruthers Creek

The TRCA’s jurisdiction also extends into Lake Ontario to a point defined by the Territorial Divisions Act, R.S.O. 1980

The population in 2004 within TRCA’s jurisdiction is approximately 4,300,000 (37% of Ontario’s population).
Conservation Authorities Act (1946)

- created in 1946 in response to flooding and erosion concerns
- basis for TRCA's mandate to prevent, eliminate or reduce the risk to life and property from flooding and erosion

- Ont. Reg. 166/06 (permits)
- Programs like Erosion Management and Habitat Restoration
EROSION HAZARD MANAGEMENT @ TRCA
IN-STREAM ESC CONTROL PRACTICES

Necessary when:

• The work itself is located in the water:
 – to control stream erosion
 – to install new infrastructure (bridges with piers)
 – to realign a section of watercourse
 – to protect buried infrastructure (pipelines, sewers)
WHAT IS IN-STREAM ISOLATION?

- A sediment control practice in flowing water
- To isolate sediment in the work area from the rest of the watercourse
WHY IN-STREAM CONTROLS ARE REQUIRED

- Comply with legislative requirements
- Protect terrestrial and aquatic organisms from excess sediment
- Reduce turbidity and water quality concerns
- Protect of downstream infrastructure from sediment and debris accumulation

http://www.irv-software.at/kunden/sifim/images/region/ImpoundmentFig4.jpg
CURRENT RESOURCES FOR IN-STREAM CONTROL PRACTICES

- OPSS / OPSD
 - Turbidity Curtains (219.260/261)
 - Temporary bypass / Full Diversion (221.030)
- Erosion and Sediment Control Guidelines for Urban Construction (GGHA, 2006)
- Sustainable Technologies Evaluation Program (STEP)
- Supplier websites
 - Application
 - Design considerations
 - Installation & maintenance
There are many variables that affect performance & suitability:

- Water levels
- Ice
- Debris
- Soil type
- Uneven bed surface
- Thalweg position

Choosing the wrong method can be time consuming and costly to repair and maintain.
TIPS AND TECHNIQUES FOR COMMON IN-STREAM CONTROL PRACTICES
COMMON IN-STREAM CONTROL PRACTICES

- Polypropylene Bag (‘Meter bag’) Cofferdam
- Floating Silt / Turbidity Curtain
- Flume
- Water-filled dam
- By-pass pumping
WOVEN POLYPROPYLENE BAG COFFERDAM

- Typically 36”x36”x36”
- 1 cubic metre capacity (commonly known as meter bags)
- Typically filled with pea gravel
- 4 point straps for lifting/placing
WOVEN POLYPROPYLENE BAG COFFERDAM

• Provides a structural barrier adjacent to or in the watercourse
• Constricts flow to the remainder of the channel
• Can be utilized with unwatering to provide a dry work area
WOVEN POLYPREPROPYLENE BAG COFFERDAM

- Used perpendicular to flow for bypassing; or
- Parallel to flow for temporary diversion

Diagram:
- Flow arrows indicating direction.
- Metre bags and discharge pump and hose.
- Work area marked as NTS.
- Gravel filled yard bags wrap around poly sheeting to create impervious barrier.
- Extend poly sheeting upstream to reduce seepage through substrate.
- Min. 1.0m high to prevent base flows from overtopping the dam while providing a freeboard of 0.30m at all times.
- Extend poly sheeting 1.0m downstream to reduce bed scour during overflow.
WOVEN POLYPROPYLENE BAG COFFERDAM

Pros

- Flexible configurations
- Reusable (typically can be moved 2-3 times*)
- Small-moderate footprint
- Good for winter construction projects
- Adjustable when floods are forecasted
WOVEN POLYPROPYLENE BAG COFFERDAM

Cons

- Typically needs a liner for an effective seal → installation in depths > 1 bag high is challenging
- Reusability requires operator TLC
- Can have a big footprint in deep watercourses
- Eventual landfill disposal
Lifting and seepage at bed/liner interface

Think about duration and time of year
• Use a sling to lift the bags
 ➢ Directly with teeth when no staff are in the water
 ➢ With a clevice hook if staff are in the water (for safety)

• Don’t fill the bags to capacity
 ➢ ~80% optimal
 ➢ Advise your estimator!
 ➢ Use clean pea gravel – never sand or any deleterious materials in the event of a break
• When installing perpendicular to flow (e.g. for bypassing) pump first to lower water levels and make liner installation easier

• Consider a bentonite liner and/or bentonite bags at toe of liner for gabion-lined channels and other watercourses with highly permeable beds

• Remove from d/s to u/s
WATER-FILLED DAMS

- Water filled tubes to provide a structural barrier between the work area and the receiving watercourse.
- Can be installed perpendicular or parallel to flowing water.
WATER-FILLED DAMS

Pros

- Very portable
- Uses on-site water to fill
- Adjustable lengths
- Work ‘in the wet’ but isolated
- Or in the dry in conjunction with pumping
WATER-FILLED DAMS

Cons

- Big footprint when inflated; problematic for small streams (parallel to flow)
- Rolling (extreme conditions)
 - Hard to re-position if it rolls
 - Not as adaptable for storm events
 - Bacterial growth
- Thermal impacts (short-term)
WATER-FILLED DAM

General Tips

- Best for lower flow streams and lakes
- **Reinforce with meter bags** if using in higher flow systems
- **Release** captured water *slowly* or onto a splash pad
 - can cause erosion if released in an uncontrolled manner
- Consider discharging water into filter bag or in settling basin
 - temperature & bacteria

FLOATING SILT (TURBIDITY) CURTAIN

- OPSD219.260/61
- Geotextile vertically suspended in water to enclose work area
- Curtain acts as a sediment barrier to protect the rest of the watercourse from disturbance by construction activities
- **Parallel** to flow only
FLOATING SILT (TURBIDITY) CURTAIN

- Made of Woven geotextile ≤300 μm; or
- Geomembrane of low-permeability synthetic material
- Float, adjustment lines and ballast
- 50mm freeboard
FLOATING SILT (TURBIDITY) CURTAIN

Pros

- Height adapts to fluctuating water levels*
- Easy to install
- East to move and adjust as work progresses
- Small footprint
 - good for narrow streams
- For work ‘in the wet’
FLOATING SILT (TURBIDITY) CURTAIN

Cons

• Damaged easily by ice
• Vulnerable to failure on bends*
• Does not perform well in fast flowing streams
• Not for work that needs to be ‘in the dry’ (obviously)

*without additional measures in place
• May need to add pea gravel bags for additional ballast
• If maintaining in colder temperatures, minimize movement and break ice proactively
• If located along a bend, use additional measures upstream to deflect flow (e.g. meter bags)
• Consider adding T-bars and paige wire fencing for structural support*

*Not appropriate for shale beds
FLUME

- CSP or HDPE pipe conveys flows through work area to allow work in the dry
- Can be used in conjunction with pumping to assist in conveying flow
FLUME

Pros

- Allows in-stream works to be constructed in the dry
- Good when construction activity spans entire watercourse
 - e.g., grade control work
- Typically more cost effective than full bypass pumping*
FLUME

Cons

• May not be suitable for highly sensitive streams
 – Installation/removal disturbs bed
• Should be sized to convey the 2 year event
 – may be cost-prohibitive depending on flow rates
• Requires sufficient elevation change to work passively (may need pumping \(\rightarrow\) additional $)
May need to add supports to get required slope
- Splash pad at outlet for erosion protection
- Work should still be phased in the event of a major storm event
BY-PASS PUMPING

• Uptream and downstream limits of work area are blocked with a cofferdam
 ➢ rock, meter bags, water-filled dam, pea gravel bags, jersey barriers, etc.

• Flows are bypassed with a pump and hose(s) or into a temporary channel to isolate the desired length of watercourse
BY-PASS PUMPING

Pros

- Allows in-stream works to be constructed in the dry
- Good when construction activity spans entire watercourse
 - e.g., grade control work
BY-PASS PUMPING

Cons

• Pumps can use ~1200 L/day in fuel
 – $7,000 - $10,000 / week (fuel only)
 – GHG emissions
• Submersible pumps clog easily in sandy streams
 – Daily maintenance
• Generator and pump system are at risk of vandalism when left running overnight
• Can be noisy
• Pump and hose requirements are frequently underestimated
BY-PASS PUMPING

General Tips

- Stabilize work area daily so pumps can be shut off overnight and allow water to flow through site
 - Easiest with meter bag cofferdams
- Supplier flow rates typically do not take fish and self-cleaning screens into account
 - Additional restriction to flow
- Trash pumps with self-cleaning screens are better for sandy bottoms
- Dig a small sump for the pump or place in pool section for best performance
BY-PASS PUMPING

General Tips

- Clear leaf litter and debris proactively before pumping to reduce clogging and cleaning
- For sandy bottoms where trash pumps are not desired; elevate submersible pump on a skid and strap upright
- Consider an additional cage around intake in streams with a lot of woody debris
- Pay more for a self-cleaning fish screen to save on maintenance
IN-STREAM CONTROLS – LESSONS LEARNED

REMEMBER FIRST PRINCIPLES

• **Avoid** in-stream works to the fullest extent possible – back to planning stage
• **Phase work** to minimize downstream risk in the event of failure
• **Adhere to timing windows** to reduce risk to aquatic life and habitat

STORM EVENTS ARE BECOMING MORE INTENSE

• Don’t pray it won’t rain – **plan for it to rain** and know what to do
IN-STREAM CONTROLS – LESSONS LEARNED

KNOW YOUR FLOW

• When you price your job and when you actually do the job may be very different
• Velocity, depth and discharge should be understood at different times of year
• Measures should be designed to withstand the 2 year event where possible

SHORT TERM GAIN = LONG TERM PAIN (USUALLY)

• Don’t choose the cheapest method to buy and install – choose the method that can perform under the site conditions
• Wrong selection = increased maintenance = $$ $$
Questions?
Thank You

Moranne McDonnell, B.E.S., C.E.T., CISEC
Associate Director, Engineering Projects
Restoration & Infrastructure Division
TRCA
(416) 392-9725
mmcdonnell@trca.on.ca